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0. Summary

Asymptotic multinormality of linear rank statistics
based on independent vector valued random variables
is obtained. Under suitable assumptions, weak esti-
mates for the remainder terms for convergence to normality
are also obtained. Results on asymptotic normality are re-
lated to Ha’j ek (1968) and Pun and Sen ( 1969). Re—
suits on the remainder terms are related to those of
Jure~kov~ and Pun ( 1975), Bergstrom and Pun ( 1977) , and
Hu~kov~ (1977).

L.u 1. Preliminaries
•

____ — (1) (p)Let — (XN .s . .. .  X~~ ) , L—l,...,N be a sequence of
— 

independent p—variate (p � 1) random vectors having con—

• tinuous cumulative distribution functions (cdf) F
~~
(x).

x = (xW ,...,x~~~), i1,...,N respectively. Consider
now the random matrix XN corresponding to ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i.e.,

( 1.1) 
~~ 

XNi i=l ,. .. , N; ~sNi. ~~~~~~~~~~~
• . . Op •
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and observe that each row of is composed of N inde—

pendent univariate random variables. Let R,~~ be the

• rank of among ~~~~~~~~~~~~~~~~ for each v =

Then corresponding to the observation matrix we have

a rank collection matrix R
N~ 

where

I
(1.2) RN = ( (R ~~~~) )

\P1, . .. ~P.

Consider now p sets of scores (a~~’~, 1 � i SN), 1 ~ v ‘p

generated by known functions C p :  (0,1) -4 R in either of

the following ways:

• (1.3) ~~~ 
~ 

(i/(N+1), i 1 ,...,N; v=l,...,p

(1.4) a~?~ E~~ (U~~~ ) ,  i 1,...,N; v 1,...,p

where t4~
) is the ~U1 order statistic in a random sample of

size N from the uniform distribution over (0,1). Consider

now the simple linear rank vector ~~ corresponding to

(or ~~) where

(1.5) = 
~~~~~~~~~~~~~~~~~~~~~~~~ S~~

V) r c ~~ ~~~~ (R
1~J~). 

1 ~ ~

• 

- 

and where (c~~~, 1 ~ i ‘N), 1 ~ v ‘p are p—sets of known-

• 

Ni 
NTIS • Wh1 1

(regression) constants. DDC Buff SectIon 0
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In the next section we establish the asymptotic normality

of by following the methods of Chernoff—Savage (1958) and

Pun —Sen (1971). For a different approach, see Hájek (1968)

and Pun —Sen (1969). In Section 3 we obtain the estimates for

the order of normal approximation for S • This constitutes the gen-

eralizations of the results of Jure~kov~—Puri (1975), Bergstrom—Pun

• 
- (1977), Puni—Rajar am (1977), and Hu~kov~ (l97lbL where the problems

- 
•

• 

are treated in the univaniate set—ups. The multivaniate extensions

in the generality of our paper do not appear to exist in the litera-

ture so far . (For a rather special multivaniate case, the reader

• is referred to Hu~kov~ (1977a)).

2. Asymptotic Normality oE We now establish the asymptotic

normality of defined in (1.5). We make the following

- 
assumptions: 

6 -½ 6 —~/2
(2.1) )~ Ct) ) ‘x l (1—t) } , I~p ’ (t)) ‘Kit (l—t )~ ; O<t<].

V V
• (V )

• (2.2) max C,,. I
;

• 1~i~ T ‘

_ _ _ _ _  -½’
- 

• _ _ _ _ _ _ _ _ _ _ _ _  = O(N ) ,  1 ‘ v ~ P
&

• where

(2.3) ~ 2 = Var ~~~ 1 ‘ ~~ ~~ 
p

v N 
S~ ’~ 

I

For convenience we shall take = ( 
~~ ••~ t-) , where

1- I 
1 p

the s are given by (2.3).

We then have the following theorem.

Theorem 2.1 Let the scores ~~~ , 1 � 
~ 
p be defined bv (1.3).

Then, under the assumptions (2.1) and (2.2), for every vector

~~~ ‘ ~~~~~~~~~~~~~~~~ 
has asymptotically (as N-..)

the n(O,1) distribution where UN ~~~ 
are defined by 
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F ~~~~~~~~~~

—

~~~~

---

(2.4) = (~~
(1)~~~~~~~ (P)

)
S 

~ (‘~) = ~ c~~ S ,(H (~C)dF~~~~(x) , l~~v~ p

(2.5) H~~~~(X ) = N~~~ E F ~~~~(x );  F~~~~(:) = P(x~~~’x), 1 ~~v ~~p

(2.6) 

and 

((:
~

))

(2.7) = Coy (S~
M
~~ S1~

V)); 1 ~ ~, v ~~
p.

Furthermore1 the theorem remains true, if in (2.7)

are given by

(2.8) = E Cov (A~1~~ (4~). 
~~~ (4~

) 
.

where

(2.9) A~~
’
~ (x) = ~ E ( c ~~~— c~~~)j ’  

~~~~~~~~~ 
F~~~~(y) 1 ~ ‘(H~~~~( j ) )

(v)
dP
N. ~~

and

• I( x�y) 1 ~~~~~~ x~y, and 0 othexwise

Proof:
Let 1.

a
2~~~..

ap) be a set of fixed but arbitrary constants.

By the Cramer -Wold criterion, it suffices to show that
( v )

p SN(2.10) t = U
N~ 

say is asymptotically normal.
v=l

~~

iI

~

tr
~~~~~

bce the following representation for ~~~~

(2.11) Cx) = N E i(X~~ ~ x) 

- • • — —
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H~~~(x) is already defined. (See (2.4) above.)

(2.12) C~
’
~~(x) = I (X~~ � (x))

(2.13) C~~~ (x) = E C ~~~ F~~~ (x) E~C~’~~(x) ]

We shall adhere to the convention of denoting stochastic variables

(H~~~, c~~~) with subscripts and non—random functions (H~~~, c~~~)

without subscripts, although depending upon N.

Then the following inequalities are immediate:

(2.14) (x) ~ N ~~~~~~~~ )C1~~ I (x)

(2.15) IC~
”
~~x)I 

� N 
~~~~~ ~~~~~ 

H~~~(x), 1 � v p

We shall use the representation.

(v) N (v) (V )  (v) (v) (v) 3 (V )
(2.16) SN 

= $ 
~v(~~ f 

B
~ 

Cx)) dC~ 
Cx) = 

~N 
+ 

~lN + 
~2N + 

.~~~~ 
D
i~

—
~~~

where 1~
(v) is given by (2.3).

(2.17) = ~~ (H~~~~( x ) )  d (C~~~ (x) - C~~~~(x ) )

(2.18) ~(v) = 
~ 

(J~~V)(~ ) — H~~
’
~ (x)) p (H~~~(x)) dC~~~~(x)2N V

(2.19) ~~~~ = N+l ~ :H~~~
(x) cp~, (H~

”
~(x)) dC~

”
~~(x)

(2.20) = J’~ 
(H~~~(x) — :~~~(x)) ~~ ::~~~~~~~ 

d(C~
’
~~(:) - c~

”
~ (x) )

(2.21) D3N = CcPV~% N+1 ~N 
(x),)— ~~~

(H (x))— (jjjH~ (x) —H (x))

dC~~~(x)

I
I

I-

• —-- —-
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H Substituting (2.16) in (2.10), we have

(2.22) U
N 

= ~~~ 
{

(v) 
+ (~~~

) 
+ + 

~L D~~~}
The proof will be accomplished if we show the following:

(A) ~L
(V ) is finite.

• - (v) (V)

~ (s~~ ~~B2N~)
-~~ • (B) z - is asymptotically normal.

~=‘
p a. 3

(C) E E D .~ -, 0 in probability.
V 

3 1  3

Proof of (A): Observe that

;$ dC
~
”
~ (x)I

~ N max 
~~~~~~ ~ ~p CH &kx)) IM (x) < -f-c. for each N

1�i�N V

by assumptions (2.1) and (2.15) .

- 
Proof of (B) : For a fixed v , we shall verify the Liapunov crite.

non for the normality of (4~ ~~ e~~
) ~~~ and then do the same

p
for the sum E 

~~~~~~ ~~~~) g~~ , by an extension of the- C
r
_

inequality.

In fact we do so separa tely for 4~ 
g ’ and ~~ v) ~~1 and use the

C~~ inequality .

Since we are considering a fixed 
~ 
, we can drop the indexing

variable v and simplify our nota’ion substantially.

- ~~~~~ . •~~~~ •~~~~•
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Consider (2.18)

~2N 
= -R(x)) cp ’ (11(x)) dC(x)

Integration by parts yields,

- (2.23) ô2N B(x){HN(x) _H(x)}i 
— B(~) d(IIN(x) -H(x)) 

-

-c. •

where
x

(2.24) B(x) = 
~ ep’(R(x)) dC(x) , x0 arbitrary but H(x ) > 0
‘
~
x0 

0

We shall later prove that the first term in (2.23) is

0 (g) , $  =~~p v
The second term of the same can be written as

-

- 

(2.25) f B(x) d(H
N
(x) —11(x)) N

1 

~ 
{B(xNi) — E $ ( X11.J} 

I

We shall show that

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0. as N4c. for some c > O .

In fact, it suffices to verify,

(2.27) ($Ny(2+C) E E !~~
(XNj ) 1

2+€ -. 0

which by the Cr and Jensen inequalities implies (2.26).

Next, choose an ~ > 0 such that (2 + e) (6 - ½ )> -1 for the

6 given by the constraints on ~ . Then,

__ _ __ _ __ _ _ _ _ _  _ _  _ __ __ __ _
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• 
(2•28)(g~~~ 2+~~~ Ie(~~~ ) 1 2+C = (3NY~

2-f
~~ i~1 

EIB (X11.))
2
~~

2+e

• ( g~ ) (2+ C) 
~ N2~~ max J C 11.)

2
~~ ~ I 5 ‘ ( 11(y) )  dH (y)~ dF

11~
Cx)

i=1 1~ i�N x

(2+e) N c. 2-fe

= ( max ~g1 IC11. ~~~ 
{~ cp ( H ( x ) ) !  + q,(R (x~) ) i} dF11.(x)

- 1�i�N

~ 0(N ’~
”

~ ) + I~~
(11(xo))f} dH(x)4 0 ,  as N~~ w

because ( 2 + C ) ( 6  - ½)  > -1 and cp (H( x0
) )  is a constant. Observe

j c  ~~~~~~~~
that we have used the fact max 2+c = 0 (N~~~~’~)].�i~ N g

It remains to be shown that in (2.23),

• a (x)
, = ~~-&{H11(X 

- 11(x)}i = o (1) •

t~~~ I A /N fH 11
(x) -11(x)) A /N g ~~~‘ ( f f (y ) )  dH (y )~

x
0

. A/ N IH11(x) —H(x)IO(1)) ~,
‘CH(y))dH (y)I

x
O

~ 
K~/N I R11(x) -H(x)~ {H (x)(l-H (x))}~ 

-~~~-— —-— ~~~~~~~~ ~~—- —~~~~~~~~~~~~~~~ - -~~~~—~~~~~~~~~~ --— - - — • •  - —--——-—- - ——S-- - - A -~~~~~~~~~
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since ~p(H(x0
)) is a constant.

By Pun —Sen (1971), given any c , 6’ positive, there is a

constant C (e , 6’) independent of N such that, with proba-

bility > 1—c
½ 6 ’

N½ 1}111
(X ) H ( X , I  �C (€ .6 ’) {H (x) ( l _ H ( x ) ) }

Thus ,

8—6 ’
• 

li’a (x) t � K {H ( x ) ( 1 — H ( x ) ) }  C(~~,5 ’) - . 0

as x-.±. , by choosing 0 < ~~ ’ <~~

The verification of the Liapunov condition for is

similar, in fact, easier and is therefore not given here. The

C -inequality yields the Liapunov condition for + 

~2N~
Consider next the normalized sum,

• —l Cv) ( )
+ a211

We need to verify the Liapunov condition for the above

express ion.

Let 2 = var( ~ (8 + 9
(v)))

• ‘V l  V V 111 2N

We shall assume that ~,2 is bounded away f rom zero for all N

(If not, the awn is trivially degenerate normal as N-.+.. .)

Write ~~~~ + ~~~~~~~ 
1

- ——a.-- ~~~~~~~~~ ~•J ~~~~~~~~ _ _ _ _  •~ - -~~ —
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where are independent random variables (as already done

e~r1ier). We have to show
2+€

• 
• 

(v)
- -.-f2+~)N 8Ni• (2.29) lim a ~~ = 0 .

• • 

N-s~~ 
i=1 V 1 V

We have already shown that

-~ N 2-fe
- 

(2.30) u r n  (g~~
(2+~~ E E J  a~~ I = 0

•
- N-.~~’ i=l

(2.29) follows from (2.30) upon noting that there is a constant

C(p, e) , depending only upon p and € such that

Cv ) 2+€

E~ a. 
~~~~~~~~~ 

� C ( p ,c )  Ia/s 1
2-f- e 

E I B ~~~~) 2f -
~

— V=1 ~ v=]. V V 1

(Generalized C~_inequa1ity.) -:

This establishes (B). We note that e depends only upon 6

and hence the same choice of C works for all V 
•

Proof of (C): Recall that we have to establish

• p

~ a S  E D . 0 1
~~l 

V V j = 1  j N p

• Clearly, it suffices to prove for a particular V since we have

a finite sum (1 , ... , p) . Again, we shall drop the index v

Consider, )S’Du~
)= ) (N+lY1i

1
1 
L~~~

(x)
~~

I (H(x)) dC11(x) )

-l
E I ~~~

‘ (H(X
11~ ) ) 1I C 11.t = ‘j .

~ i~1 
~~

1
- — - ---- - -~~- ~~~~

—— — -- -- -~--~----~ 
.- - -•-- —~ -- —.----- ~~- -  ~~~~~~~~~~~~~~ -.--- I~~~ 

i
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—1].—

where

V
11. 

= q~ (H (XN
i)) 3~

• 1

To prove
N
~ v11. ~ 0 in probability.
i= 1

it suffices to show that

N
- 

E N
0
~ 

.4-a , for all N , for some a. , O < ~ , < l  . 
I

i= 1

(By particular case 1
0 , page 241, Loéve (1963)).

- Take a 2/3 :

i~l 
Ely11.)

’ 
~K?f

2”3
~~ I 1 E H(X11

. ) ( l — H ( X
11~ ))) 

( 6—3/2)

- 

N1’3 max (11)C ))
2/3~~~

J {H(x) (1_R(x))} 3
1 

~~11~
(x)

1~i�N —
~~~~

26
• 

- 

= K 0(l) 

~: 
{H(x) ( l_ H ( x ) ) }~~~~

’ 
dH(x) < -f-c. ;

where we have used the fact that

max ) S C I O ( N )
1~ i�N

Consider next,

(~~~~(X) -HCx) )~~’ (11(x)) d(C11
(x) - CCX ) ) . 

-

•

By Pun —Sen (1971), given any c> 0 , 0 < 6 ’<½ , there is a

constant C ( e , 6 ’)  , independent of N such that with

probability > 1-~
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-
- 

½ ½— 6 ’
N )H11

(x) —H(x)) < C(c,8’) {H(x)(1—R (x))}

Thus with probability > 1 - e ,

)~~~(x) -H(x) )~~’ (11(x))) ~~K C ( e , 6 ’ )  11½ (11(x) (l_H(X))) 6 1

taking 6’ <6 and setting 6* = 6 - 6 ’

- 

It suffices to show that

*6 —l
• S N 

~L {Hx ~~1—11( x~~} d(C
11
(x) — C(x))40 in probability.

We shall use the Liapunov criterion for degenerate convergence

- 

(page 275, Ls eve (1963)).

-

~~~ — 1 —½ ~° 6*_l
S N j ’ {H(x) (l-11(x))} dC

11
(x)

— 1 —½ N 6*_ l
= S N jE C

11~ [H 
(XNi) (1 — 11 (X

11
.) )}

- Set

½— l  6*_i
= N S CNj {H (XNj ) (1 - 11(X

11
) )}

Then,

- _ 1 _ ½ N  6 ’  — 1 1 1• 5 N 
i~l 

C
11~{H

(X
11~
) (1 - H(X

11~))} ~ 
i~1 

V11~

It remains to prove , N E (VNj - E V~~ ) 4 0 in probability.
i= 1

This will be accomplished if we can show that for some a>  0

- • ——- -----—~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~ - - -
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(2.31) ~~(l+~ )~~~ E 
~Ni ’ 9 0

Choose a> 0 such that , (1 + a) (o~ — 1) > —1 7 that is,

• O < c L < 8 Then,

• 
- —(1+a) N l4ct

• N E E I V .I
F! i=1 Ni

- 

A/N max )C • )  ]+a 
*

~ j~l(1+a.)1 
]~ i�N 

Ni 
E {~R(X .)  (l—H(X . ))}

i=l Ni Ni

,, _1_ ~~,ç * ,~
—~~~ I’ r . ~ 

—
~~~~,

=0(1)11 ~H(x)(l—H(x))~ dH(x) = 0(N )
.~ I.. )
-c.

which proves (2.31).

Next consider

1111 (x) 1111 (x )

11+1 )-,CH (x)) - ( 11+1 -H(x))!~p’(H(x))}dC11(x)

We have to show that ~~~D3j~3O in probability.

The following substitution will simplify the proof. Let

(2 .32) C = 3!
311 & A J N

Then it suffices to prove C3N

Observe that , since max ~~~ — 0(N )
• 1~i~N ~~~we have

• •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~ 



; - S .  • __,._:___. -
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

14

( 2 . 3 3 )  1C 3111

Na(x)
0(1)1 )q(’~~~ 

H11(x)) 
— ~~(H(x )) — ( N — 11(x)) cp ’ (11(x)) )d1111(x)

The proof that the right hand side of (2.36) is o(N ½) can

be found in Pun —Sen (1971), pages 401—405.

This proves Theorem 2.1.

For a different approach, as well as the derivation of some

tests for linear hypothesis based on S11 , see Pun —Sen (1969).

Conzoutatjpn of V
11 : It is clear that the variance

contribution is from the term + • it is easy

to check that

- (2 .34)  B~~~ + 8~~~ 
= j

1{A ( x ~~~ ) — E A ’ ( x ,~~~)} I

where

= ~ ~E ( C ~~~~- C~~~~) ç  I(1 1
M(y)) d F~ (y) ; x

0 
arbitrary.

centering A~~ ’~ (x at its expectations, we note that

(2.35) + = 
i~1 

~~~(x~~ )

where

I

- -
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(x) = 
~~~ 

(Cu

) 
— C~~~) ~~~1x� y) —F ~~~ (y)~~~’(H~~~(y)) dP~~~(y)

which yields the desired approximation (2.7).

We next give a corollary which extends these results to the

case when the scores are generated according to (1.7) (b) .

. 1 - Corollary 2.2: Let be the inverse of a distribution

function. Let 
~~~ linear rank vector defined ~~ jj.~, (1.8)

but with the scores generated according to (1.4) . Then, under

the conditions of Theorem 2.1, is asymptotically multinormal

with same parameters and V11

Proof: Let

/~~*( i)
* ‘N  N(2 .36) S = ‘ ..• . — .—‘N

Clearly, it suffices to rove

( 2 . 3 7)  5 * (v )  
— 9 ( V)  =0 (5 ) ,

N N P V

which then entails - ‘ 2 in probability.

Again, since v is fixed, 1�v�p , we shall drop this index .

We define

tNt)(2. 38) ~11
(t) = E (a

11
U) — 1~ aN (o) = 0 • 0 - < t c l  ,

i=1

where t°) is the greatest integer not exceeding a

It is easy to check that

— ~~~~~~~~~~ — —•- --- - -- - - - •~~ —- •—
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1

_ i l

* 
N H ( x)\

(2 .39) SN = 
L 

q,
N(
—j

~~]. ) dC
11

(x)

The proof of Corollary 2.2 will be accomplished if we prove

the following:

Lemma 2 3 :  Under the hypotheses ~f Theorem 2.]. and

Corollary 2.2 , we have

(i) lim ~11
(t) = cp (t)

(ii) i$ {~11(~~~~
H11(x)) 

- 

~(~~~~~~~(x))}d C
11
(x) I = o ( g )

Proof of Lemma 2.3: We shall only prove (ii) since the

proof of (i) can be found in pages 408-409 of Pun -Sen (1971).

By inequality (2.14) , we have

fNH11(x)\ fN 11
11(x)\

(2.40) iI ~~ 11+ 1 N + 1  )} d C11(x))

� max )C Ni )~~ k11(11+1) - .

Hence it follows that

(2.41) 
1~~:11~~~ ’ ~!l

t
~ N~~~

r) — 

~(~~j) i 
‘ 

-

= 0(1) N ½ E ) ~v11(~~j) 
- = A11 

, say

_ _ _ _ _ _ _  

~~~~~~~~-- ---~~~~~— - - --~~~~~~~~ - - --- — - -— -- -~~~~~~~- ~~- --- •~~~~~~
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But, lim A11 = 0 , by Pun —Sen (1971), pages 409—411.

This immediately entails N -, 0 in probability, which

proves Corollary 2.2.

A consequence of Corollary 2.2 is that in many cases of

practical interest (such as the normal scores), asymptotic

normality holds with the same centering sequence , whether

the scores are given by (1.3) or (1.4) • Thus theorem 2.1

and corollary 2.2 serve to unify the results of Hajek (1968)

and Ro ffding (1973), and also to some extent simplify the

results of the latter paper.

3. Remainder Terms of 5 : In this section, we obtain

an estimate for the remainder in the norma l approximation to S11

Recall that we can write

(3.1) 
~N~~~N 

= 
~~~~~ ~

Ni~~Ni~ 
+

where

(3.2) 
~Ni (X11.) = (A ~~~ (X~~~ ,..., ~~~~ (x~~~)

D — 

~~~~~~N t N  “
~~~~~~ 

N )

Cv) (v )  (v) (v)D
11 = D 111 +D211 +D 311 • ~~~~~~

Normalization by g
~, is of no consequence and was introduced

there merely to simplify the details of the proof. We shall not
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use it here.

We shall simplify the notation somewhat and also express

it in a form so that we can use Corollary 17.2, page 165 of

Bhattacharya—Ra nga Rao (1976) .

We can write,

~~~~~~~~~ = N½ ~~~. (X
11.) , 

V. = Cov(T11~)

Then,

(3 4) 
~N 

= N 
•
E 

~Ni + ~N1=1

Let

_ 1 1 1
(3.5) V = N  E V .

i=1 1

Comparing (3.5) to (2.7) and (2.8), it is clear that the

elements of V are 5
MV

Let , for x = ~~~~~~~~~~~~ ,....x~~~ )

(3.6) F11(x) = ~(~~~
)_ 

~~~ � ~~~~~ ..., s$~
_ 

~ 
� x~~~)

We then have the following theorem:

Theorem: Let the conditions 
~~~f 

Theorem 2.1 ~~ satisfied.

in addition,

(3.7) Sup )~~‘ (t) ) = ~~~ )~~~z +co , l �~~~~p
0~t~1 ~

~~~ V ~~ positive definite. 

- - - -- - ---~~~~~~~~~~~~~~~~~ ~~~~~~~~~~—~~ -- ~~~~~~ —-~~~~~~~~ ---- -~~~ - -  -- ---——-——---- -- -
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Then, there exists ~ constant C(p) , independent of N

such that,

(3.8) Sup I 
~~~~~ 

- o, ~ ~ c (~) x —3/2 p3 N ½ 
+

3E~~

where

~~~~~ ~~~~~~~ 
j~ ~~~ distribution function (p—variate) Q

~

a Gaussian random vector with mean 0 and dispersion matrix V ;

(3.10) X = smallest eigenvalue of V ;

1 N
(3.11) p 3 

= E E l i  T11.) ~ , the norm being the euclidean norm;
i=1

and 4 0 pointwise.

Furthermor~

( 3.12 ) N
~~N 

= 

~~~~~ 
~~~ s ’[~~ IC I~

)
I])

Remark. Since &~ 4O , it would be of interest to have an estimate

for the fluctuations of . But in view of the generality of the
situation and the fact that we are dealing with the multivariate

set up, it is not easy to secure a purely numerical estimate.
(3.12) gives a probabilistic bound. The problem of obtaining a

sharp bound remains open.
Proof: Writing 

~N
N 

~ ~~~ 
, we have

i=l

(3.13) 
~N E N~~~~~N~~~~ N

Let G
N 
be the distribution function (p—variate) of T11. Then

(3.14) FN C
~
) = G

11
(x — 

~~~
Hence,

_ _



F,,.. - - - 
- 

— - - -~~~~ tvr’~’~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -r-~~ ’V~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
_

~~_ rr~~rTT —- — • - -

(3.15) F
11

(~ ) — 

~o ,v~.&I ~~ I G N~Z _ E N ) — 

O ,v~~ EN ) )

+ 
~~~~~~~ 2N~ 

—

We estimate the two quantities on the right hand side

separately.

First, an application of Corollary 17.2 (page 172) of

Bhattacharya-Ranga Rao (1976) yields,

(3.16) )G11(x 
- 2N~ 

- 

~~~~ 
- EN ) ~ C(p) ~

-3/2 
~

uniformly in ,~c , wherein all the quantities have already been

defined. ))cp ’)) <+. ensures the existence of p3

Estimating the second term is rather more involved.

However, since 
~O,v 

is continuous, the convergence of the

distribution functions is uniform and hence

• (3.17) Sup )~ 
(x—D ) — 

~ (x)) = A
XE&P O,v ” —‘N O,v~~’ N

converges to zero pointwise. We only need to obtain (3.12).

Note that , by the Mean Value Theorem (in ]R~ ) , there is

a point ~ on the Line segment joining x - D11 and x such that

(3.18) o,v~~ 
— 

0,v~~ 
— 

~~~ 
= 

~N 
L(~)

where L(C) is the differential of I at g .0,v —

Next, for the right hand side of (3.18), we have

P (v) 
_ _

- 

(3.19) EN L(~) = 

~~~ 
D
N 

6~~
(v) ~~~~~~ 

-
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Further, for each v • ~~~~~~ , it is easy to check that

1
6 : o. v is dominated by the ~

th 
marginal density .

o b p V  —1 —½Hence, I � & (2rd
v

Consequently,

~ -i ( )  -½(3.19) )A E S V I ~~ r )
N -, v N

Thus, (3.12) will be established if we show that for each V

( )  , N (v)
(3.20) A / N  DN” = O~(ll~~II 

i=l 
)C11i ))

Again, we shall drop the index v in the rest of the proof.

Rearranging terms of DN , we get ,

(3.21) D
11 

= 
c {q<~~~~~~ 

H., (x) ) — cp (H(x))} dC N
(x)

- (H
11

(x) - H(x) ) cp ’ ( 11(x) ) d C (x )  .

In order to simplify the proof , we shall drop the factor

• In view of the fact that ep’ is bounded, the conclusion

will not be affected.

Consider q, (H
11

( x) )  - q (H(x)) . By the Mean Value Theorem,

— cp (H(x) ) = (1111(x) — H ( x ) ) c p ’ (g 11
( x ) )

for some 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _  _.-• - -—— — ~~~~~~ 
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Hence,

(3.22) WN — H(x))cp (~11(x))dC11(x)

� ~ ‘ll 
~:

A /N
~~
H
N

X) - H(x)1d~C11~
(x)

Let ~ >0 be given. Then by Pun -Sen (1971), there is a

constant C(s) independent of N such that with probability > 1-~~

A /N )H11(x) - 11(x)) < C(s)

Thus in (3.22), with probability > 1-~ ,

(3.23) i f~/~’ 
(11

11
(x) —H(x))q,’ (g~ (x))dC 11 (x)~ � C ( € ) ~~p ’~ E~~C11~~

The proof of

(3.24) (}1
11
(x) -H(x))~p ’ ( H ( x ) ) d C ( x )~~~ C(~ ) )) cp ’~ j E ~C11~

in probability is identical.

(3.23) and (3.24) establish (3.20) and (3.19). which in turn

entail (3.12). The proof is completed.

Remark: From the expressions for &~~ and , it is

clear that ~ is extremely hard to compute. Recall that X is

the smallest eigenvalue of the dispersion matrix V . However,

if the components x~~ of the vectors X~~ satisfy the

____ - & _ - - - - _ ~~~—-—~~~~~~~~~~~~~~~~ —~~~-- —---_ _ —- — —  — -~~~~ -- —— --- ~~~- -_ ~~~~~~ - - —-~~~~~~ --  ~~ --
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condition of “weak dependence” in the sense

(3.25) E I~ . 1> 0 V 1 .....P ; -
• ~ M~U

’ 
~~

the classical Grischgorin theorem (cf. Dahlquist—B)~rek, (1974)), 
-

permits us to replace ~. by much simpler expression (3.25)

assuming without loss of generality, ~~> 0 . If one is prepared 
-

to work numerically, much better estimates for )~. can be obtained

(op.cit. Dahlquist—Bjorck).

I

.

I 
—--- _ -—- - _ _ _ _ _ _ _ _ _ _ _  _ _
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